
Revised Coordinate Systems Design for ASC Data Model

SDS-12.0

Jonathan McDowell

March 29, 1998

Contents

1 Vector columns 2

2 Images and Arrays 3

3 API revisions 5

3.1 Coord Create routines . 5

3.2 CoordCalc . 5

3.3 Unifying Image/Table creation semantics 6

4 Physical system 6

4.1 WCS systems . 6

4.2 WCS systems on columns . 7

1

1 Vector columns

Experience now suggests a slight modi�cation to the use of vector columns as described in the

abstract design. For maximum ease of use with existing code, I propose a new function

dmDescriptor* dmGetCpt(dmDescriptor* v, long* cptNo);

and a new implementation suggestion: Creating a scalar column involves making the descriptor,

tying it to an ETOOLS column, and entering it in the DM's list of columns (accessed by TableGet-

NoCols and TableOpenColumnNo). I propose that creating a vector column of dimension n should

make the n column descriptors, tie them to the ETOOLS columns, enter them in the name index

(for dmTableOpenColumn) but not in the list of columns. It should then make the vector descrip-

tor, which would have pointers to the individual scalar descriptors and would be entered in the list

of columns. It would also make the MTYPE and MFORM keywords. So, TableOpenColumnNo

would see only the vector column, not its components, but TableOpenColumn would be able to �nd

the component by its name and use it for scalar column operations. The new routine dmGetCpt

would give you access to the components without knowing their names, by returning the scalar

descriptor for a given component number of a vector descriptor.

However, coordinate systems could attach directly to the vector column descriptor, not to the

individual column descriptors.

When binning on a vector column, the resulting image should have an axis group of dimension

the same as the vector column (see below).

When reading a column, in many cases of old �les we want to interpret a pair of columns as

a vector column but it has no grouped name. In this case, or in a case where dmColumnCreat-

eVector has a blank name entry, we make a spurious name by combining the component names in

a parenthesized comma-delimited list: e.g. component names RA, Dec go to vector column name

`(RA,Dec)'.

With this implementation we need to:

� implement dmColumnCreateVector

� implement dmGetCpt

� Fix dmGetScalar to either fail, or use the �rst vector component, if given a vector descriptor

� Delay implementation of dmGet/SetVector(s) since we can still use dmGet/SetScalar(s) on

the individual components

� Adapt dmBlockOpen to scan for MTYPE and MFORM keywords and create vector columns

accordingly (but see also coord issue below, of making RA-TAN/DEC-TAN a vector col

automatically)

� Adapt binning to handle case of binning on a vector column.

2

� Issue: can we let the user make new groupings with a dmDescriptor* dmVectorGroup(dmDe-

scriptor** list, long dim, char* name) ? This would have an error if any list entries were

vectors.

2 Images and Arrays

The de�nition of axis groups in the abstract design needs to be modi�ed slightly. My new view is

presented here. Types of descriptor are:

� Data Descriptor (Column Descriptor, Key Descriptor, Image Data Descriptor)

� Subspace Column Descriptor

� Coord Descriptor

A descriptor has:

� the Common Descriptor Properties: name, unit, description, data type, display format

� the Element De�nition Properties: element dimensionality d, element type t

� the Array Speci�cation Properties: array dimensionality n, array dimensions n

i

.

� the Attached Coordinate List, a set of pointers to Coord Descriptors

� the Axis Groups (described below), present only if n > 0.

� the Auxiliary Data; a pointer to actual data for Data Descriptors or Subspace Column De-

scriptors, or to the transform info for Coord descriptors.

The transform info for Coord descriptors includes a pointer to the `parent' descriptor as follows:

� Transform type

� Transform values (CRPIX, CRVAL, CDELT)

� Transform parameters

� Parent descriptor

� Parent descriptor axis group number (zero if the coord is attached to the descriptor itself

rather than to one of its axes).

3

With the Axis Groups, we do two things: (1) group the axes in the same way that vector columns

group table columns; (2) attach the logical to physical coordinate transformations which rescale the

binned image pixels to `original' pixels, and provide names for the axes. These axis groups are (for

the time being) each of dimension 1 or 2. They correspond to the logical coordinate system in

IRAF WCS language.

The Axis Groups information consists of

� The number of groups, ng

� The number of groups actively de�ned so far, ng1

� The dimensionality of each group, g

i

(must be less than or equal to 2 for the current imple-

mentation)

� For each group, a (possibly null) pointer w

i

to a Coord Descriptor of transform type linear.

Initially ng = n (the number of axes), g

i

= 1 for all i, w

i

is null, and ng1 = 0. At all times

the sum

P

ng

i=1

g

i

= n. Calls to dmCreateAxisGroup (see below) should increment ng1 and set w

ng1

;

if the call has dim=2 then n

g

is decremented and g

ng1

is incremented. An alternate acceptable

implementation would be to set ng = 0 initially and only create axis groups when the explicit call

is made; this makes the inquiry routines to get at axis group info a little less friendly, though.

When can a Coord Descriptor be the parent of another Coord Descriptor? We don't want to

chain coord descriptors usually, for e�ciency reasons and FITS compatibility reasons. However, it

makes sense for the world coordinates to be chained to the physical coordinates. Hence we make

the following rule for dmCoordCreate: if the parent descriptor is of type dmCOORD and the parent

descriptor's own parent descriptor axis number is zero, dmCoordCreate should return an error to

the e�ect of 'Can't chain coordinates'.

In FITS and IRAF, the axis group dimensions for those axis groups of dim 2 or more must be

stored as header keys. The keyword AXISD4 = 3 indicates that the 4th axis group has dimension

3. AXISDn keywords with value 1 should be omitted.

In general, the default component names should be AXISi and the default full names should be

AXISi if the axis group has dim 1, AXISGj otherwise (where j is the axis group number). These

default names are not written to the data �le. If non-default names are used, they should be stored

as AXISGn = '....' for the group name and AXISn = '...' for the component name.

� Implement axis group descriptors

� Implement dmImageCreateGroups, dmArrayCreateAxisGroup

� Check the usual dmGetUnit, dmSetDesc, etc. work for axis group descriptors.

� Adapt dmSet/GetScalar to fail for axis group descriptors

� Issue: should the dmImageCreate, dmImageCreateAxes, dmImageCreateGroups calls have dm-

BlockImageCreate, etc counterparts with dmDataset* arguments?.

4

3 API revisions

3.1 Coord Create routines

We need to modify dmCoordCreate T to add an extra argument char** cptNames between the

arguments unit and dim.

We need to add

dmCoordCreateLinear T(dmDescriptor* dd, char* name, char* unit, T crpix, double crval,

double cdelt);

This wraps the simple, common case of a linear coord transform of dimension 1 so you can use

literal constants instead of having to create a variable with pointers, e.g.

dmCoordCreateLinear_l(pha, "Energy", "keV", 0, 0.15, 0.01);

We need to modify dmCoordCreateI to only support 1D:

dmCoordCreateInteger T(dmDescriptor* dd, char* name, char* unit, Type crpix, long crval,

long cdelt);

If you need to make an integer coord descriptor for a vector column, with an n-dimensional linear

transform, you can call dmCoordCreateInteger T on all of the individual components. You'd then

like to be able to group the resulting descriptors in a single vector coord descriptor using something

like dmVectorGroup described above.

To create an image physical system, we have

dmDescriptor* dmArrayCreateAxisGroup(dmDescriptor* dd, char* name, dmDataType type,

char* unit, char** cptnames, integer dim)

(R1.7) Creates an axis group of dimension dim on the next available set of axes. Returns an error

if we run out of axes. Creates and returns a dmCOORD descriptor whose parent is the just created

axis group, with the given name and component names and element dimensionality dim. Initializes

the transform to the unit transform. The transform can then be reset with dmCoordSetTransform l.

This version works on descriptors of type Image Data.

(R3.0) Support for table cell images.

dmDescriptor* dmArrayCreateAxisGroups(dmDescriptor* dd, char** name, dmDataType*

type, char** unit, char** cptnames, long* dim, long ngroups)

(R1.7) Like the above, but lets you de�ne multiple groups at once.

Note: dmArrayCreateAxis is deleted from the API, as are dmArrayGetAxisGroupCoord and

dmArrayGetPixelCoord, dmImageCreateAxes, dmImageCreateGroups.

long dmArrayGetNoGroups(dmDescriptor* dd)

(R1.7) Returns the number of axis groups.

3.2 CoordCalc

int dmCoordInverse T(dmDescriptor* dd, double* value, T* inverse)

(R1.8) Return the inverse coord transform given a dmCoord descriptor and a value.

5

3.3 Unifying Image/Table creation semantics

Currently dmDatasetTableCreate maps to dmImageCreate, while dmBlockCreate is useless for

non-null images. We'll revise the API so dmDatasetTableCreate is renamed dmTableCreate, and

dmBlockCreate for tables is replaced by a new dmDatasetCreateTable and dmDatasetCreateIm-

age. This has the advantage that the dmDatasetCreate routines have a dmDataset* argument like

the other routines beginning with dmDataset in their name. We should also rename dmDataset-

TableOpen/dmDatasetTableClose to dmTableOpen and dmTableClose.

dmBlock* dmDatasetCreateImage(dmDataset* ds, char* name, long* axes, long naxes)

(R1.7) Create image within dataset.

dmBlock* dmDatasetCreateTable(dmDataset* ds, char* name)

(R1.7) Create empty table within dataset.

4 Physical system

The IRAF WCS model treats the special case of the physical coordinate system, which is a

linear 1-D mapping from a logical coordinate axis.

In IRAF-based FITS �les the mapping from logical to physical is done with LTVi and LTMi i

keywords.

In the ASCDM, we introduce a coordinate transform descriptor, whose parent is the axis group.

Rule: A coordinate descriptor whose parent is an axis group must be of transform type linear

or nD-linear.

The physical system represents `original' binning of the data, say the original instrument pixel

size.

Rule: On rebinning an image, if no physical system exists, one is created equal to the logical

system of the original image. On reading an image, if there is one coordinate system and it is linear,

it is interpreted as the physical system.

The physical system is indicated to the DM by the special transform name 'physical', which is

otherwise the same as 'linear'.

4.1 WCS systems

The abstract design indicates that the world coordinate systems should be mappings from physical

to world, not logical to world. Remarkably, this turns out to be how IRAF handles things internally

too. However, externally �les record the logical to world system. Therefore, on reading a header

one must recreate the physical-to-world system from the logical-to-world plus logical-to-physical.

An alternate implementation is to make all the coordinate systems have the axis group as their

parent, in other words all are logical-to-world, matching the header info (the FITS approach). I

think we should probably go with the IRAF approach.

For the �rst linear transform, on FITS axis n,

6

� CTYPEn gives the name of the coordinate

� CUNITn gives the unit of the coordinate

� CRPIXn, CDELTn, CRVALn give the crpix, cdelt, cval values de�ning the linear transforma-

tion from logical to world coordinates.

For subsequent linear transforms, use CiTYPn, CiUNIn, CiRPXn, CiDLTn, CiRVLn where i is

1, 2, ... m-1 for m subsequent transforms.

The index i = 1 is reserved for the physical transform. The LTM and LTV keywords should also

be read and written for back compatibility (eg saoimage).

For a 2D transform on a vector column: suppose the FITS columns of the vector column are

nos. 3 and 4. Then we write CUNIT3, CUNIT4, CRPIX3, CRPIX4, CDELT3, CDELT4, CRVAL3,

CRVAL4 as before (or CiUNI3/CiUNI4 etc as appropriate), but the CTYPEs are more complicated

- you have to follow the WCS rules explained in the DM FITS Conventions memo. You also need

to write the MTYPE and MFORM keywords for the names.

4.2 WCS systems on columns

WCS systems on columns are handled the same as WCS systems on axes. The FITS keywords are

di�erent (see the FITS conventions document).

For columns, the physical transform is considered to be the identity.

When binning a set of columns to an image:

� Scalar columns map to scalar axes; vector columns map to axis groups.

� A coord system on a column maps to a coord system on the corresponding axis, corrected for

binning as necessary.

� Unless the image has binning by factor 1 and lower left corner position equal to (1,1,...) in

the units of the table columns, create a physical coordinate transform which relates the new

logical system (the image system) to the original table values. If there is no WCS, make the

physical system the WCS. For instance,

dmcopy foo.fits[bin time=100:200:10,pha=20:40:2] bar

would make a 10 x 10 image with two axes, with coordinate system

CTYPE1 = TIME

CTYPE2 = PHA

CDELT1 = 10.0

CRPIX1 = 0.5

7

CRVAL1 = 100.0

CDELT2 = 2

CRPIX2 = 0.5

CRVAL2 = 20.0

Here we assume no WCS previously on TIME or PHA; we put the physical system in CTYPE

etc.

On the other hand

dmcopy foo.fits[bin pos=box(100 200 20 40):2] bar

with coord keywords

MTYPE1 = 'POS'

MFORM1 = 'X,Y'

MTYPE2 = 'EQPOS'

MFORM2 = 'RA,DEC'

TTYPE5 = 'X'

TTYPE6 = 'Y'

TCTYP5 = 'RA---TAN'

TCTYP6 = 'DEC--TAN'

TCDLT5 = -0.04

TCDLT6 = 0.04

TCRPX5 = 512.0

TCRPX6 = 512.0

TCRVL5 = 101.3

TCRVL6 = -20.3

would make

MTYPE1 = 'POS'

MFORM1 = 'X,Y'

MTYPE2 = 'EQPOS'

MFORM2 = 'RA,DEC'

AXISD1 = 2

CTYPE1 = 'RA---TAN'

CTYPE2 = 'DEC--TAN'

CDELT1 = -0.08

CDELT2 = 0.08

CRPIX1 = 256.0

8

CRPIX2 = 256.0

CRVAL1 = 101.3

CRVAL2 = -20.3

C1TYP1 = 'X'

C1TYP2 = 'Y'

C1DLT1 = 2.0 / Physical system

C1RPX1 = 0.5

C1RVL1 = 100.0

C1DLT2 = 2.0

C1RPX2 = 0.5

C1RVL2 = 20.0

with the physical system in C1TYP.

9

