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Abstract. The NASA/ISO Key Project on active galactic nuclei (AGN) seeks to
better understand the broad-band spectral energy distributions (SEDs) of these
sources from radio to X-rays, with particular emphasis on infrared properties. The
ISO sample includes a wide variety of AGN types and spans a large redshift range.
Two subsamples are considered herein: 8 high-redshift (1 < z < 4.7) quasars; and
22 hard X-ray selected sources.

The X-ray selected AGN show a wide range of IR continuum shapes, extending
to cooler colors than the optical/radio sample of [7]. Where a far-IR turnover is
clearly observed, the slopes are < 2.5 in all but one case so that non-thermal emis-
sion remains a possibility. The highest redshift quasars show extremely strong, hot
IR continua requiring ∼ 100M⊙ of 500–1000K dust with ∼ 100 times weaker opti-
cal emission. Possible explanations for these unusual properties include: reflection
of the optical light from material above/below a torus; strong obscuration of the
optical continuum; or an intrinsic deficit of optical emission. A cosmology of (H0,
Ωm, Ωk, ΩΛ) = (50 km s−1 Mpc−1, 1, 0, 0) is assumed.

1 Introduction

Active galactic nuclei are among the broadest emission sources in nature,
producing significant flux over a span > 9 decades in frequency, from radio
to X-rays and beyond [7]. The various emission mechanisms involved are
presumably ultimately powered by a central supermassive black hole [28].

A substantial fraction of the bolometric luminosity of many AGN emerges
in the infrared, from synchrotron radiation and dust. Which of these is the
principal emission mechanism is related to quasar type and is an open ques-
tion in many cases [37]. Non-thermal emission is paramount in core dominated
radio-loud quasars and blazars [19], although hot dust contributes in some
cases [4]. The non-thermal component is likely related to radio and higher
frequency synchrotron radiation, providing information about the relativis-
tic plasma and magnetic fields associated with quasars. Other AGN classes
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show evidence for a predominant dust contribution [6], particularly infrared-
luminous radio-quiet quasars [15], or a mix of emission components [12]. Much
of the dust emission is due to heating by higher energy photons from the ac-
tive nucleus, and is therefore important for understanding the overall energy
balance. The AGN thermal component may be an orientation-independent
parameter, useful for examining unification hypotheses.

The nature of the foremost infrared emission source is ambiguous in
many AGN with sparsely sampled spectral energy distributions (SEDs). Dust
with smooth spatial and temperature distributions can mimic a power law
spectrum [29,3], particularly in the absence of detailed measurements to re-
veal bumps from temperature and density inhomogeneities. Grain emissiv-
ity is characterized by a Planck function multiplied by a power law factor
∝ ν1−2 [16], so spectral slopes in the Rayleigh-Jeans region of the coldest
potential thermal component lie between α = 2–4, depending on the grain
properties and optical depth. Known synchrotron emitters have relatively
flat sub-mm power-law spectra (α ≤ 1.1; fν ∝ να) [10], and radio sources
generally have spectra flatter than the canonical α = 2.5 for a self-absorbed
homogeneous synchrotron source [26]. Therefore, α = 2.5 is a convenient
partition to distinguish thermal emission from standard non-thermal models,
and simple two-point spectral slopes and even lower limits to spectral indices
may reveal the dominant mechanism. However, synchrotron models with a
concave electron energy distribution [5,31], free-free absorption, or plasma
suppression [32] can produce slopes steeper than α = 2.5. While α = 4 is
observed in some milliarcsecond radio knots [24], thermal models offer the
most consistent explanation for steep far-infrared (FIR) to mm slopes [15,1].
A thermal origin is considered to be the most likely explanation for sub-
mm/FIR slopes α > 2.5 in the present work.

Two large, complementary ISO AGN observing programs are opening
up new wavelength windows in the FIR as well as improving the spatial
resolution and sampling at shorter wavelengths: the ISO European Central
Quasar Program [12,13]; and the NASA/ISO Key Project on AGN, discussed
herein. The Key Project sample consists of 5–200µm chopped and rastered
ISOPHOT [22] observations of 73 AGN selected to incorporate a wide range of
AGN types and redshifts. The data are reduced using a combination of the
(ISO-) PHOT Interactive Analysis (PIA) [9] software plus custom scripts.
Details of the reduction, difficulties encountered, and early results are dis-
cussed in [36,17,38,18]. These observations directly measure the FIR spectral
slopes in low and moderate redshift AGN and provide better constraints on
the emission mechanisms throughout the infrared region. Some of the fun-
damental questions being addressed with the new data include: the range of
SEDs within each quasar type; differences between one type and another;
the evolution of the SEDs; and correlations with fluxes at other wavebands,
host galaxy properties, and orientation indicators. This paper focuses on two
subsamples, hard X-ray selected AGN, and high-redshift quasars.
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2 Hard X-ray Selected AGN

Infrared and X-ray data complement each other well and are important for
understanding the overall AGN energy balance. Non-thermal infrared emis-
sion is possibly connected with the X-rays, either directly as a portion of a
broad synchrotron component, or as part of a radio-infrared seed spectrum
which Compton scatters to produce the X-rays. Infrared data from dust-
dominated sources reveal the level of ultra-violet (UV) and soft X-ray radia-
tion which has been reprocessed, and dust masses can be estimated assuming
optically thin emission.

Fig. 1. Spectral Energy Distributions (SEDs) of H0557-385 (top) and PG1440+356
(bottom) compared with the median SED for a low-redshift sample [7] illustrating
the two extreme SED types present in this sample. The near-IR and far-IR cutoff
slopes are indicated in both cases.
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Table 1. X-ray Selected Sample: IR SED Parameters.

Name z L10−100µ L1−10µ αIR αcut

1044 erg s−1 1044 erg s−1

MKN 1152 0.052 6.3 2.4 −0.9 −

MKN 590 0.025 3.3 4.2 −0.9 −

H0235−52 0.045 4.5 2.6 −1.6 0.2
H0557−385 0.034 11.9 3.8 −2.1 0.7
PG0804+761 0.100 37.1 53.0 −1.9 0.6
H1039−074 0.674 450. 190. − −

NGC 3783 0.009 1.3 1.6 −1.4 1.4
TON 1542 0.064 8.3 15.9 −1.7 −

IR1321+058 0.201 210. 6.4 −2.8 1.8
MCG-6-30-15 0.008 0.6 0.4 −1.6 1.3
IC4329A 0.014 5.4 20.3 − 0.8
H1419+480 0.072 15.5 7.2 −1.3 0.3
PG1440+356 0.077 18.1 17.5 −1.1 1.8
H1537+339 0.330 72.3 42.7 −1.1 −

KAZ1803+676 0.136 20.9 31.0 −1.3 0.2
E1821+643 0.297 720. 550. −1.1 2.5
H1834−653 0.013 1.2 0.3 −1.9 1.6
MKN 509 0.035 11.4 20.3 −1.0 2.2
NGC 7213 0.006 1.0 0.6 − −

MR2251−178 0.068 18.4 23.6 −0.9 3.7
MCG-2-58-22 0.048 13.0 10.0 −0.9 2.5

Most X-ray selected AGN to date have been observed in soft energy bands
< 3.5 keV [33,35,14]. These surveys suffer obscuration biases similar to opti-
cal selection, due to the gas typically associated with dust. The absorption
cross-section drops steeply with increasing energy [39], so hard X-ray selec-
tion is much less affected by intervening material. Surveys in hard X-rays
arguably are the most efficient way to distinguish between accreting and
stellar sources [8] as well as the optimal method for defining a representative
sample of AGN [37]. A comparison between the UV/soft X-ray flux absorbed
and the IR emission provides an estimate of the relative importance of ac-
cretion and stellar power in AGN. We randomly selected 23 ISO targets (of
which 22 are reported in Table 1) from a 2–10 keV AGN sample derived from
the A2 experiment onboard the HEAO 1 satellite [11,20]; 12 of these are also
in the earlier Piccinotti sample [21,23,27] from the same experiment.

Figure 1 shows the IR−optical SEDs for two HEAO AGN illustrating
the wide range of behavior present. H0557−385 shows a strong hot compo-
nent with a steep near-IR slope (αir ∼ −2, Fν ∝ να) and a turnover which
is relatively flat. PG1440+356 shows a very flat optical−near-IR continuum
(αir ∼ −1), a strong cool component compared with the low-redshift me-
dian [7] and a steeper turnover (αcut ∼ 1.8) which, however, still remains
below the critical value of 2.5 indicating thermal emission. The range of IR
continua in the sample overlaps but extends to redder continua than an opti-
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cal/radio selected sample [7]. This is apparent in the low mean for the near-IR
slope, αIR ∼ −1.4± 0.5 compared with the Median SED value of −1.0± 0.3
and also the extension to cooler values of the ratio of decade luminosities:
L(1−10µ)/L(10−100µ) = 0.8±0.5 compared with the radio/optical sample:
1.0 ± 0.8. The latter is also illustrated by comparison of the histograms in
Figure 2. However a Kolmogorov-Smirnov test does not indicate a significant
difference in the samples (P=18%). If real, this trend is an interesting ex-
tension to the lack of bias against red optical/UV continua in these sources.
Confirmation awaits more systematic comparisons in an upcoming paper.
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Fig. 2. A comparison of the distribution of the ratio of hot to cool IR luminosities
(L(1−10µ)/L(10−100µ)) for the HEAO sample with that of [7]. While a suggestive
trend toward stronger cool luminosities is present in the HEAO sample, a KS test
gives only an 18% probability that this is significant.

3 High Redshift AGN

While skewed to low-redshift objects, due in part to lost sensitivity and
changes in observing mode, the Key Project sample contains 8 quasars in
the redshift range 1.0 ≤ z ≤ 4.7. In order to cover the intrinsic FIR contin-
uum in these sources, we also have an on-going sub-mm observing program
at the JCMT.

The spectral energy distributions of these quasars vary widely. The highest
redshift sources: 1202−0727 (z = 4.69); 1508+5714 (z = 4.3); and 1413+1143
(z = 2.551), are factors of 10–100 brighter in the near-IR than the low-z
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median SED [7] (Figure 3). At lower redshifts, PG1407+265 (z = 0.944)
and PHL5200 (z = 1.981) are a much closer match to the median, while
PG1718+481 (z = 1.084) is > 5 times fainter throughout the IR. A much
larger sample will be required to determine the underlying distribution of
SEDs at moderate and high-z which is hinted at by the variety seen here.

Fig. 3. Spectral Energy Distributions (SEDs) of a) 1202−0727 and b) 1508+5714
compared with the median SED for a low-redshift sample [7] illustrating the ex-
tremely strong near-IR emission in both sources. Grey-body curves illustrating the
minimum range of temperatures for purely thermal emission are also shown.

The strong IR emission in the highest redshift quasars places them amongst
the most powerful sources known. The range of temperatures is broad, 40–
1000 K. Table 2 lists derived properties for two sources. The mass esti-
mates assume optically thin gray dust with β = 2. The 40K component
in 1508+5714 is based on only the observed 850µm flux; it is likely to be an
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upper limit, because the FIR slope is flattening at those wavelengths, indicat-
ing possible contamination by a high frequency extension of the non-thermal
radio emission. These and other high-redshift AGN [1,15,25] contain large
amounts of dust, which implies a substantial star formation rate (SFR). Av-
erage SFRs listed in Table 2 were calculated from the inferred mass assuming
a 1% dust production efficiency [2] and an onset of star formation at z = 10.
Estimates of the FIR luminosity due solely to this SFR, computed with a
conversion of 2.2× 109L⊙M−1

⊙ yr [30], are also listed. These are ∼ factor 10
below the observed luminosities, implying that the bulk of the FIR emission
is driven by the AGN, or the sources are undergoing an intense starburst of
≥ 1000M⊙ yr−1.

Both sources have large excesses over the median SED in a spectral region
that corresponds to warm and hot dust emission. This emission cannot yet be
conclusively attributed to a thermal source, but that is a strong possibility,
since cool dust is clearly present in 1202−0727 and both objects show a
sharp cutoff at wavelengths corresponding to the Wien region of dust near
the sublimation temperature. The difficulty with a dust interpretation is the
energy source to heat the material; the observed rest-frame optical and near-
UV luminosity is clearly too low in both sources. Dust may obscure all but
a small fraction ∼ 1% of the intrinsic blue bump luminosity. It is unlikely
that we are directly viewing the extincted source, as broad emission lines
are clearly visible on continua which do not appear heavily reddened [34].
The observed flux may be diminished by reflection off of a scattering surface
positioned above a dust torus. Alternatively, if we are seeing the intrinsic
output of the central engine in the optical and near-UV, then these AGN must
be abnormally luminous in the far-UV and X-rays. There is an indication of a
blue upturn in 1508+5714, but the requisite luminosity remains unobserved.

Table 2. Properties of two High-Redshift Sources

Name z Dust Mass (M⊙) SFR FIR(SFR)
40K 100K 1000K (M⊙ yr−1) (1045 erg s−1)

1202−0727 4.690 1.5× 109 < 2.2× 107 300 250 2.1
1508+5714 4.300 2.0× 109 3.6× 107 53 280 2.4

4 Summary

The principal points discussed in this paper are:

• The X-ray selected AGN show a broader, cooler range of IR continua
than optical/radio selected AGN.

• The X-ray selected sample show no strong evidence ((MR2251−178 ex-
cepted) for a steep, αcut > 2.5, far-IR turnover, which would rule out
non-thermal emission. Sub-mm observations are necessary to confirm.

• z > 4 quasars show ∼100 times stronger near-IR emission than low-
z AGN. This may be due to strong obscuration, orientation or a real
deficit of optical emission in these sources.
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• The strong cool IR emission in the high-z sources implies dust masses >
109M⊙, which would require an average SFR of a few hundred M⊙ yr−1.
This underproduces the observed FIR flux, so there is either a major
AGN component, or the SFR at the time of observation is significantly
larger, ≥ 1000M⊙ yr−1.
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