
Astronomical Data Analysis Software and Systems XV
ASP Conference Series, Vol. 351, 2006
C. Gabriel, C. Arviset, D. Ponz and E. Solano, eds.

Sherpa: Goals and Design for Chandra and Beyond

S. Doe, D. Nguyen, C. Stawarz, A. Siemiginowska, D. Burke, I. Evans,
J. Evans, J. McDowell, B. Refsdal

Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge,
MA 02138

J. Houck, M. Nowak

MIT Kavli Institute for Astrophysics and Space Research, 77
Massachusetts Avenue, 37-287, Cambridge, MA 02139

Abstract. We describe a new, modernized design for Sherpa, the CIAO
fitting and modeling application, planned for the CIAO4.0 release. Sherpa
can be used for general modeling and fitting of astronomical data. It is
not restricted to analyzing X-ray spectra; Sherpa has been used to ana-
lyze images and spectra from many X-ray missions (e.g., Chandra, XMM,
ROSAT), and even from optical missions such as Hubble. Sherpa provides
a number of different models, fit statistics and optimization methods, and
is extensible with the S–Lang programming language. However, integra-
tion with S–Lang is not complete as it was a late addition to Sherpa; and
as a monolithic application, Sherpa is difficult to link to other tools and
programming environments. The new design calls for separating the mod-
els, fit statistics, optimization methods and science functions into several
standalone modules, that can be loaded into a new Sherpa application,
other S–Lang applications, or C/C++ programs. The design will make it
straightforward for users to embed Sherpa modules into other languages,
such as Python or Perl. The Sherpa application will be a new S–Lang ap-
plication, providing the full capabilities of S–Lang, and which will more
smoothly load and run user extensions written in S–Lang, C/C++, or
Fortran. Such an environment provides a flexible way for users to add
functionality to solve new data analysis problems. In this paper we dis-
cuss how the new design will better support analysis of data from Chan-
dra and many other missions (including non-X-ray missions); and how the
new design will allow us to better accommodate future requirements, such
as new optimization techniques, Bayesian statistics, distributed comput-
ing with Sherpa, and analysis of data sets of more than two dimensions
(e.g., data cubes combining spatial and spectral information).

1. Design Goals

Sherpa is the modeling and fitting application developed by our group at the
Chandra X-ray Center (CXC) for the CIAO software package (Chandra Interac-
tive Analysis of Observations). The current version of Sherpa already provides

77



78 Doe et al.

access to many different models, optimization methods and statistics. It allows
analysis of images and spectra, and is extensible with the S–Lang1 programming
language. As far as providing functionality goes, many initial goals have already
been met.

But in time we identified new requirements. Adding new functions to meet
these requirements stressed the initial design. Tools that link to the Sherpa li-
brary often need only a small subset of functions, and yet must link in the entire
library. Sherpa links to the ChIPS (Chandra Imaging and Plotting System)
and S–Lang parsers, and must go through contortions so that (usually) the cor-
rect command gets to the correct parser. The Sherpa interface to user-written
models—whether written in C, Fortran or S–Lang—has become too cumber-
some.

This led us to consider a new design and new implementation of Sherpa. The
goals of the new design are to retain all the good features of the current Sherpa,
as well as to meet new goals of better modularity, extensibility and flexibility.
Our goals include providing separate data, model, optimization method, science
function, and statistic libraries; improving extensibility by making the S–Lang
interpreter the only application parser; and increasing flexibility by implement-
ing the application in three distinct layers. These three layers are the base layer
of the various Sherpa libraries, the application layer binding together data sets
and models for fitting, and a UI layer that provides interfaces to functions in
the application layer.

2. Base Libraries

The first part of the design has been to identify the pieces of Sherpa that should
go into separate libraries. To date, we have designed, and partially implemented,
data set, model, optimization method, and statistic libraries.

The data set library contains classes that encapsulate data sets to be fit. A
DataSet object contains storage for data x- and y-values, model y-values (to be
compared to the data), statistical and systematic errors, and weights.

The model library contains classes that encapsulate models to be compared
to data. A model consists principally of two things: model parameters, that
can be varied during a fit, and a model function that, given parameter values
and an x-value, can calculate the corresponding model y-value. The library
contains Model classes that encapsulate particular types of models (e.g., such as
Gaussian or power-law functions). The library also contains composite model,
or CompModel, classes that contain collections of Model objects, and combine
their output (e.g., to model a spectrum as the sum of several Gaussian models).

The optimization method library contains the methods Sherpa provides. Ex-
amples of such methods are the Levenberg-Marquardt and simplex optimization
methods. The library contains a base class, OptMethod, and derived classes
encapsulating each of the optimization methods.

The statistic library contains various statistics that can compare data and
model values, to measure how well a set of model values fit the data values. The

1http://www.s-lang.org/



Sherpa: Goals and Design for Chandra and Beyond 79

FitSet

+data: DataSet*

+arf: DataSetArf*

+rmf: DataSetRMF*

+src_model: CModel*

+bkg_model: CModel*

+inst_model: CModel*

+fit(meth:OptMethod*,stat:Stat*)

+calc_stat(stat:Stat*)

+calc_errors()

DataSet

Data to be fit

DataSetARF

Special instrument data (effective area)

DataSetRMF

Special instrument data (energy response)

CompModel

Source model

CompModel

Background model

InstCompModel

Instrument model

LMdif Chi2DataVar

Figure 1. The FitSet class has references to a DataSet object, and
various CompModel objects, which are used to calculate models to
compare to the data.

library contains a base class, Stat, and derived classes that encapsulate statistics
such as the Cash, χ

2, and C-statistics.

3. Application Structure and UI Layer

The Sherpa application needs data structures that bind together data, model,
optimization method and statistics code to provide all the fitting and modeling
capabilities Sherpa is designed to offer. Figure 1 shows the main data structure
used in the application, the FitSet class. The FitSet is a container that collects
together DataSet objects with the CompModel object used in a fit. In the
figure, the FitSet contains data in a DataSet object, instrument data in special
DataSet derived classes, and CompModel objects that model emission from the
source of interest, emission from the background, and an instrument CompModel
that models how the instrument affects the observation. The FitSet can also
accept references to OptMethod and Stat objects for fitting. The application
will contain a collection of FitSet objects (one per data set to be fit). A fit can
be performed on a single FitSet, or all FitSets simultaneously.

Access to these FitSets and to functions to manipulate them is provided by
S–Lang functions. But we also intend to make it possible for users to replace the
S–Lang interface with interfaces to other languages (e.g., Perl, Python). Thus
the structure of the application is in three layers, as shown in Figure 2.



80 Doe et al.

Data Models
Optimization

Methods
Statistics

Base libraries

Application

Layer
FitSets

Pointers to CompModels

(only knows of base class)

SLangCompModel

(type of CompModel

determined in UI layer)

UI

Layer

Application functions

wrapped in language of choice

Libraries also

wrapped by

language of

choice (e.g.,

create S-Lang

module for

each library)

Figure 2. The Sherpa application will be built in three layers—a base
layer of several libraries, an application layer to bind relevant objects
together, and a UI layer.

The base libraries constitute the first layer. Each base library is an indepen-
dent library; it can be linked to some other piece of software without having to
drag along the other libraries.

The second layer is the application layer, which contains all the logic needed
for the application to fit models to data (along with other science functions).
FitSets containing data and models to be fit to the data exist in this layer.

The third layer is the UI layer. The goal is for the application layer to be
completely agnostic when it comes to the UI. We provide the S–Lang interpreter
as the command-line interface, and also as the parser to evaluate composite
models. FitSets in the application layer only know that they have been assigned
CompModel objects. The UI layer creates language-specific model objects (of
classes derived from CompModel) and assigns them to FitSets. Users need only
replace code and derived classes in the third layer to use Sherpa in Perl, Python
or other environments. This design also leaves room for us to add a GUI to
Sherpa at a later date.

Acknowledgments. Support for development of Sherpa is provided by the
National Aeronautics and Space Administration through the Chandra X-ray
Center, which is operated by the Smithsonian Astrophysical Observatory for
and on behalf of the National Aeronautics and Space Administration contract
NAS8-03060.


