
Astronomical Data Analysis Software and Systems XX
ASP Conference Series, Vol. 442
Ian N. Evans, Alberto Accomazzi, Douglas J. Mink, and Arnold H. Rots, eds.
c©2011 Astronomical Society of the Pacific

Python Scripting for CIAO Data Analysis

Elizabeth C. Galle, Craig S. Anderson, Nina R. Bonaventura, D. J. Burke,
Antonella Fruscione, Nicholas P. Lee, and Jonathan C. McDowell

Smithsonian Astrophysical Observatory,
60 Garden Street, Cambridge, MA 02138, USA

Abstract. The Chandra X-ray Center has adopted Python as the primary script-
ing language in the Chandra Interactive Analysis of Observations software package
(CIAO). Python is a dynamic object-oriented programming language that offers strong
support for integration with other languages and tools and comes with extensive stan-
dard libraries. Integrating Python into CIAO allows us to develop powerful new scripts
for data analysis, as well as rewrite and improve upon popular CIAO contributed scripts.
We discuss the coding guidelines that we have developed during this process, using spe-
cific CIAO contributed scripts — available for download online — as examples.

1. The CIAO Contributed Package

The CIAO contributed tarfile1 contains analysis scripts and modules that automate repetitive
tasks and extend the functionality of the CIAO2 software package by filling specific analysis
needs. Many of the scripts were conceived and written by CXC scientists in the early years of
the mission, before CIAO became a robust and mature software package. Over the course of ten
years, the contributed package evolved into a collection of shell, Perl, S-Lang, and slsh scripts.

Since Python was adopted as the primary scripting language in CIAO, a targeted effort
has been made to review the code of these scripts and to rewrite them in Python, bringing them
up-to-date and making them easier to maintain over the future of the mission.

2. Style Guide

The contributed tarfile had been developed in a multiple-author environment without coding
standards in place. The scripts spanned a number of languages with varying levels of parameter
file support, consistency of warning and error messages, and cross-platform compatibility.

In addition to being written in Python, a baseline requirement was that every script should
have a parameter file and an XML help file for used in the CIAO ahelp system.

The next step was to establish style guidelines for the script authors. The standard Python
style guide, known as PEP 8,3 was used as a primary resource. In addition, a scripting style
guide was developed to ensure that the scripts were CIAO-like in their appearance and opera-
tion.

1http://cxc.harvard.edu/ciao/download/scripts/

2http://cxc.harvard.edu/ciao/

3http://www.python.org/dev/peps/pep-0008/

131

132 Galle et al.

2.1. An Excerpt from the Style Guide

The following is an excerpt from the scripts style guide section on verbosity levels and error
messages.

Verbose levels

The script should default to verbose=0 or 1. If the script doesn’t

really create any screen output that the user really needs to see then

use 0 otherwise 1.

A verbose level of 2 should be considered to be useful for a user

tracking what the script has done - so at some level this replaces an

explicit log file. Things like listing the parameters used, and

what steps are being taken would happen at this level. The

ciao_contrib.runtool module will print out the command line for each

tool (i.e. so the user can see what is actually run).

A verbose level of 3, 4 and 5 are for debugging the tool/script (some

of the contributed modules will print copious amounts of verbiage at

level 5).

How to write the messages

The ciao_contrib.logger_wrapper module, which internally uses the

Python logging module, provides a slightly simpler interface for the

script writer. By using this module, you can get information from some

of the other contributed modules too (e.g. ciao_contrib.runtool).

Once the module has been loaded, the initialize_logger() routine is

used to make sure the messages will get displayed on screen, and the

set_verbosity() routine sets the verbose level of the tool and any

libraries that also use this setup. As shown below, the

make_verbose_level() routine is used to create a routine that will

display a message if the verbosity is a given level or higher. We

assume that the variable toolname has been defined previously:

import ciao_contrib.logger_wrapper as lw

lw.initialize_logger(toolname)

v1 = make_verbose_level(toolname, 1)

v2 = make_verbose_level(toolname, 2)

(you only need to call make_verbose_level() for the verbose levels

your script uses, and the choice of v1, v2, etc. is up to you).

3. A Case Study: Rewriting acisspec

The acisspec script is a textbook example of a contributed script. It was written by a CXC
scientist for specific analysis needs, but was found to be useful to many users doing imaging
spectroscopy. The shell script was added to the contributed package in 2001.

Originally, acisspec was designed to:

• Extract ACIS PI spectra and associated WMAPs for both extended sources (and back-
ground)

• Coadd or average two ACIS PI spectra and build weighted responses

Python Scripting for CIAO Data Analysis 133

The extended source extraction was replaced by the specextract tool in CIAO 3.3 (Novem-
ber 2005), but acisspec was still required for coadding imaging spectra.

There were two initial goals for the acisspec rewrite:

• Replicate the coadding and weighting functionality but remove the spectral extraction
steps

• Extend the script to be capable of combining N spectra and responses (acisspec is
restricted to two inputs)

The script, renamed to “combine spectra,” was released in August 2010 for use in CIAO
4.2. combine spectra sums multiple imaging source PHA spectra and (optionally) the ARFs,
background spectra, and background ARFs.

The Python source code is easier to maintain and update than the shell syntax used for
acisspec, creating a lighter and faster development cycle. As a Python script, combine spec-
tra can also be imported as a module into other scripts. The script itself, as well as any func-
tions it contains, can be invoked by other scripts to extend their functionality. The scripts team is
evaluating using this modularity to incorporate combine spectra into the spectral extraction
tool, specextract.

3.1. Example of Code Improvements

The original acisspec tool applied a combination of the UNIX echo and awk commands to
the CIAO output, from which the BACKSCALE header values were calculated, e.g.

f1=‘echo "$backscbgd $expbgd $expsou $expsou1 $expbgd1 ... " |

awk ’{printf "%.6e", $1*($2/$3)*($4/$5)*($6/$7); }’ -‘

f1=‘printf ’%7.5f \n’ $f1‘

In combine spectra, we used the mathematical functions from the Python module Num-
Py4 to simplify this operation. (Notice also the excellent code commenting — another point for
the style guide.)

#+++

Define the total source and background exposure values, the HEASARC

BACKSCAL value for the combined background spectrum, and the

coefficients used to scale the background spectra before combining.

Reference: http://heasarc.gsfc.nasa.gov/docs/asca/abc_backscal.html

#+++

srcpha = numpy.array(spha_strarray)

expsrc = expsrc_array

totexpsrc = sum(expsrc_array)

backscalsrc = backsrc_array

cbackscalsrc = 1.0 # backscal value for combined source spectrum

if bkg != "NULL":

bkgpha = numpy.array(bpha_strarray)

expbkg = expbkg_array

totexpbkg = sum(expbkg_array)

4http://numpy.scipy.org/

134 Galle et al.

backscalbkg = backbkg_array

bkg_coadd_factor = expsrc*(backscalsrc/backscalbkg)

cbackscalbkg = totexpsrc/sum(bkg_coadd_factor) # backscal value

for combined

background

f = range(fcount) # initialize the array of background

for i in fc:

...

if bkg != "NULL":

f[i] = cbackscalbkg*(totexpbkg/totexpsrc)*(expsrc[i]/expbkg[i])

*(backscalsrc[i]/backscalbkg[i])

4. The ciao contrib.runtoolModule

The ciao contrib.runtool module allows CIAO tools to be run as if they were Python
functions and supports a pset-like parameter mode. The easy access to and handling of CIAO
tools, accessing header and table data from FITS files, and writing data to headers and tables of
output FITS files are used extensively in combine spectra.

More information on ciao contrib.runtool is available from the “How to run CIAO
tools from within Python” webpage5 and in “Charming Users into Scripting CIAO with Python
— the ciao contrib.runtoolModule” (Burke, et al.) in this proceedings.

Acknowledgments. This work was supported by the Chandra X-ray Center under NASA
contract NAS8-03060.

5http://cxc.harvard.edu/ciao/scripting/runtool.html

